M1. (a) neutrons and protons
(b) 0
(+)1
(c) (i) total positive charge $=$ total negative charge accept protons and electrons have an equal opposite charge

> (because) no of protons = no of electrons
(ii) ion
positive
(d) Marks awarded for this answer will be determined by the quality of communication as well as the standard of the scientific response. Examiners should apply a best-fit approach to the marking.

0 marks
No relevant content
Level 1 (1-2 marks)
There is a basic description of at least one of the particles in terms of its characteristics.

Level 2 (3-4 marks)

There is a clear description of the characteristics of both particles or
a full description of either alpha or beta particles in terms of their characteristics.

Level 3 (5-6 marks)
There is a clear and detailed description of both alpha and beta particles in terms of their characteristics.

examples of the physics points made in the response:

structure

- alpha particle consists of a helium nucleus
- alpha particle consists of 2 protons and 2 neutrons
- a beta particle is an electron
- a beta particle comes from the nucleus

penetration

- alpha particles are very poorly penetrating
- alpha particles can penetrate a few cm in air
- alpha particles are absorbed by skin
- alpha particles are absorbed by thin paper
- beta particles can penetrate several metres of air
- beta particles can pass through thin metal plate / foil
- beta particles can travel further than alpha particles in air
- beta particles can travel further than alpha particles in materials eg metals

deflection

- alpha particles and beta particles are deflected in opposite directions in an electric field
- beta particles are deflected more than alpha particles
- alpha particles have a greater charge than beta particles but beta particles have much less mass
or
beta particles have a greater specific charge than alpha particles

M2.(a) (i) all correct
accept presented as a tally chart

Number of protons	3
Number of electrons	3
Number of neutrons	4

allow 1 mark for 1 correct
(ii) 7 reason may score even if 7 not chosen
number of protons and neutrons accept number of particles in the nucleus accept number of nucleons do not accept number of electrons and neutrons
(b) an ion
(c) (i) smaller than
(ii) radon loses an alpha (particle)
or radon loses an (alpha) particle or (mass of) polonium plus an alpha = (mass) radon or radon loses 2 protons and 2 neutrons (to become polonium) accept radon has less protons and neutrons
M3. (a) proton
electron
neutron
all 3 in correct orderallow 1 mark for 1 correctdo not accept letters p, e, n
(b) 4

$$
\text { reason only scores if } 4 \text { is chosen }
$$1

number of protonsaccept number of electronsaccept there are 4 protons and 4 electronsdo not accept there are 4 protons and electrons
(c) The atom loses an electron.
M4. (a) (i) L
(ii) \mathbf{M}
(b) To make a smoke detector work.
(c) $\mathbf{4 0}$
no tolerance

M5. (a) electron(s)
(b) $3^{\text {rd }}$ box ticked

The model cannot explain the results from a new experiment
(c) all three correct

Particle
Proton
Electron
Neutron

allow 1 mark for 1 correct
2

M6.three lines correct
allow 1 mark for each correct line
if more than 1 line is drawn from a box in List A, mark each line incorrect List A

List B

M7. (a) (i) neutron
(ii) neutron proton
both required, either order
(iii) 2
number of protons
do not accept number of electrons
(b) (i) any one from:

- beta
- gamma
accept correct symbols
accept positron / neutrino / neutron
cosmic rays is insufficient
(ii) electrons
(iii) are highly ionising
(c) (i) mutate / destroy / kill / damage / change / ionise Harm is insufficient
(ii) much smaller than

M8. (a) (i) half / 50%
(ii) Measure the radon gas level in more homes in this area
(b) (i) 86
(ii) 222
electron
allow 1 mark for 1 correct do not
neutron
accept letters p, e, n
(b) 9
reason only scores if 9 is chosen
number of neutrons and protons

M10.(a) neutron discovered
(b) neutron
all 3 in correct order
electron
allow 1 mark for 1 correct
proton

